Sunday 9 February 2014

[WhatsUpUoH] Talk: Temporal aspects of information processing in olfactory system

Talk by

Dr. Nixon M. Abraham
Postdoctoral fellow
Laboratory of Sensory Perception and Plasticity
Department of Fundamental Neuroscience
University Medical Centre, University of Geneva

Title: Temporal aspects of information processing in the olfactory system


Venue: Center for Neural and Cognitive Sciences, Science Complex
Time: February 14, 10:00am.

Abstract:

A cardinal question in neuroscience is how the brain perceives the ever-changing external world

and subsequently makes the appropriate decisions to adapt the behavior. Of critical importance is how  fast  the  brain  can  extract  information,  and  what  factors  control  the  speed  of  information processing and decision-making? Olfaction, the sense of smell, was generally thought as a ‘slow’ sense  compared  to  ‘fast’  senses  such  as  vision  or  hearing.  To  investigate  the  speed  of  olfactory information  processing  using  mouse  as  the  model  system,  I  quantified  the  temporal course  of olfactory decision-making by using simple and complex stimuli. Mice discriminated simple odors in  <200  ms  with  high  accuracy.  Binary  mixtures  evoking  highly  overlapping  spatiotemporal activity  patterns  in  the  olfactory  bulb  (OB)  were  discriminated  equally  well  but  required  longer (~300 ms) discrimination times (DTs). These findings show on the contrary to prior assumptions that  olfaction  is  a  “fast”  sense  and  its  temporal  course  depends  on  the  complexity  of  odors (Abraham et al, Neuron 2004). 

  These findings argue that neural mechanisms contributing to odor discrimination must act

on  a  fast  time  scale,  requiring  only  a  brief  moment  of  odor-specific  spatiotemporal

representations  to  achieve  rapid  odor  discrimination.  Such  olfactory  representation  can  be

maintained in the OB plausibly by the inhibitory network, orchestrated by granule cells (GCs). I

tested this hypothesis by altering the excitability of GCs, through targeted deletion of AMPA and

NMDA receptors in GCs. GC specific GluA2 deletion resulted in reduced DTs for complex odors

and  enhanced  synaptic  inhibition,  whereas  GluN1  deletion  caused  increased  DTs  for  complex odors  and  reduced  synaptic  inhibition.  In  summary,  these  results  show  that  DT  differences  for olfactory stimuli are initially generated in the OB by a dynamic balance between local excitation and inhibition (Abraham et al, Neuron 2010).

  In the next step I investigated how the GC inhibition controls firing properties of output

neurons  by  directly  correlating  the  behavior  outputs  with  physiological  changes.  I  established  a head-restrained  behavior  paradigm  and  proved  that  behavior  readouts  using  this  strategy  are similar to what we obtained by the freely moving strategy (Abraham et al., PLOS ONE 2012). By specific  stimulation  of  GCs  using  Channelrhodopsin  (ChR2),  we  could  show  enhancement  of pattern  separation  by  the  output  neurons  (mitral/tufted  cells),  which  helped  the  animals  to  learn complex odorant discrimination tasks faster than control subjects (Gschwend & Abraham et al., In preparation).

  After studying the inhibitory networks in OB, I have focused on the sensory periphery to

investigate  the  factors  controlling  odor  discrimination  efficiency  at  the  sensory  input  level.

Studying the glomerular activity patterns of different chemical classes at different concentrations

in trained and naïve mice showed that similarity and strength of glomerular activation define the

extent  of  neuronal  processing  as  reflected  in  the  DT  measurements.  Therefore  the  similarity  of glomerular representations can be used as a neural metric to predict olfactory discrimination time (Abraham et al, in communication). Olfactory associative learning, but not passive odor exposure caused  a  potentiation  at  the  sensory  input  level,  which  lasted  several  weeks  after  the  end  of discrimination training. This long-lasting plasticity we observed at the periphery should improve odor  detection  and  contribute  towards  accurate  and  fast  odor  discriminations  (Abraham  et  al, Revised, eLIFE).

  The future goal is to focus on synaptic and molecular mechanisms of sensory perception

and decision-making by giving special attention to different inhibitory circuits of mouse olfactory

bulb.  Initially  my  focus  would  be  on  basic  mechanisms  of  synaptic  inhibition,  followed  by

understanding behavioral neural networks in model organism.




Joby Joseph
Reader
Center for Neural and Cognitive Sciences
University of Hyderabad, India
Ph: +918008531777
Fax: +914023134493
Web:Neuronal Systems Lab
Alt email: jjcncs@uohyd.ernet.in

--
To post to this group, mail whatsup@uohyd.ac.in
Archive blog, calendar, SMS updates: http://whatsupuoh.blogspot.in/

To unsubscribe from this group and stop receiving emails from it, send an email to whatsup+unsubscribe@uohyd.ac.in.

No comments:

Post a Comment